Chandra z NASA przechwytuje Pulsar w rentgenowskiej pułapce prędkości

G292.0 + 1.8 resztkowa supernowa

Pozostałość po supernowej G292.0 + 1.8 zawiera pulsar poruszający się z prędkością ponad 1 miliona mil na godzinę, jak widać na zdjęciu Chandra wraz z obrazem optycznym z przeglądu nieba cyfrowego. Pulsary szybko krążą wokół gwiazd neutronowych, które mogą powstawać, gdy masywnym gwiazdom wyczerpie się paliwo, zapadną się i eksplodują. Eksplozje te czasami powodują „kopnięcie”, które powoduje, że pulsar pędzi przez pozostałości po wybuchu supernowej. Dodatkowe zdjęcia pokazują zbliżenie tego pulsara w promieniach rentgenowskich z Chandry, które zauważono w 2006 i 2016 roku, aby zmierzyć tę imponującą prędkość. Czerwone krzyżyki na każdym panelu pokazują położenie pulsara w 2006 r. Źródło: Rentgen: NASA/CXC/SAO/L.Shi et al.; Optyczny: Palomar DSS2

  • a[{” attribute=””>pulsar is racing through the debris of an exploded star at a speed of over a million miles per hour.
  • To measure this, researchers compared NASA Chandra X-ray Observatory images of G292.0+1.8 taken in 2006 and 2016.
  • Pulsars can form when massive stars run out of fuel, collapse, and explode — leaving behind a rapidly spinning dense object.
  • This result may help explain how some pulsars are accelerated to such remarkably high speeds.

Pozostałość po supernowej G292.0 + 1.8 zawiera pulsar poruszający się z prędkością ponad miliona mil na godzinę. To zdjęcie zawiera dane z Obserwatorium Rentgenowskiego Chandra NASA (czerwony, pomarańczowy, żółty i niebieski), które posłużyły do ​​dokonania tego odkrycia. Promienie rentgenowskie są połączone z obrazem optycznym z Digitized Sky Survey, naziemnego przeglądu całego nieba.

Pulsary szybko się kręcą gwiazdy neutronowe Mogą powstawać, gdy masywnym gwiazdom zabraknie paliwa, zapaść się i wybuchnąć. Eksplozje te czasami powodują „kopnięcie”, które skłoniło pulsar do ścigania się przez pozostałości po wybuchu supernowej. Wstawka pokazuje zbliżenie tego pulsara w promieniach rentgenowskich z Chandry.

Aby dokonać tego odkrycia, naukowcy porównali zdjęcia Chandry G292.0 + 1,8 wykonane w 2006 i 2016 roku. Para uzupełniających się zdjęć pokazuje zmianę pozycji pulsara na przestrzeni 10 lat. Zmiana lokalizacji źródła jest znikoma, ponieważ pulsar znajduje się około 20 000 lat świetlnych od Ziemi, ale w tym okresie przebył około 120 miliardów mil (190 miliardów km). Naukowcom udało się to zmierzyć, łącząc obrazy Chandra o wysokiej rozdzielczości z precyzyjną technologią, aby zweryfikować współrzędne pulsara i innych źródeł promieniowania rentgenowskiego przy użyciu precyzyjnych pozycji z satelity Gaia.

Pozycje pulsarów, 2006 i 2016

Miejsca pulsarów, 2006 i 2016. Źródło: Rentgen: NASA/CXC/SAO/L. Shi et al.

Zespół obliczył, że pulsar porusza się z prędkością co najmniej 1,4 miliona mil na godzinę od środka pozostałości po supernowej na dole po lewej stronie. Ta prędkość jest o około 30% wyższa niż poprzednie oszacowanie prędkości pulsara, oparte na metodzie pośredniej, polegającej na pomiarze odległości pulsara od środka eksplozji.

Nowo wyznaczona prędkość pulsara sugeruje, że G292.0 + 1.8 i pulsar mogą być znacznie mniejsze niż wcześniej sądzili astronomowie. Naukowcy szacują, że G292.0 + 1.8 mogła wybuchnąć około 2000 lat temu, jak widać z Ziemi, a nie 3000 lat temu, jak wcześniej obliczono. To nowe oszacowanie wieku G292.0 + 1.8 opiera się na ekstrapolacji położenia pulsara w czasie tak, aby pokrywało się ono z centrum wybuchu.

Wiele cywilizacji na całym świecie rejestrowało wówczas wybuchy supernowych, otwierając możliwość bezpośredniej obserwacji G292.0 + 1.8. Jednak G292.0 + 1.8 znajduje się poniżej horyzontu dla większości cywilizacji półkuli północnej, które mogłeś zaobserwować, i nie ma zarejestrowanych przykładów supernowej obserwowanej na półkuli południowej w kierunku G292.0 + 1.8.

G292 + 1,8 zbliżenie

Zbliżenie centrum obrazu Chandry dla G292 + 1.8. Kierunek ruchu pulsara (strzałka) i położenie centrum wybuchu (zielony owal) są pokazane na podstawie ruchu szczątków widocznych na danych optycznych. Położenie pulsara zostało ekstrapolowane 3000 lat temu, a trójkąt przedstawia niepewność kąta indukcji. Zgodność miejsca indukcji z epicentrum wybuchu daje pulsarowi i G292 + 1,8 wiek około 2000 lat. Środek masy (przecięcie) pierwiastków rentgenowskich wykrytych w szczątkach (Si, S, Ar, Ca) znajduje się naprzeciwko środka eksplozji poruszającego się pulsara. Asymetria szczątków w prawym górnym rogu eksplozji przerzuciła pulsar w lewą dolną część, zachowując pęd. Źródło: Rentgen: NASA/CXC/SAO/L.Shi et al.; Optyczny: Palomar DSS2

Oprócz dowiedzenia się więcej o wieku G292.0 + 1.8, zespół badawczy zbadał również, w jaki sposób supernowa pulsara dała potężnego kopa. Istnieją dwie główne możliwości, z których obie dotyczą nierównomiernego wyrzucania materiału przez supernową we wszystkich kierunkach. Jedną z możliwości jest to, że neutrina Wydatek w eksplozji jest wyrzucany z eksplozji asymetrycznie, drugim jest to, że szczątki wytworzone przez eksplozję są wyrzucane asymetrycznie. Gdyby materia miała preferowaną orientację, pulsar zostałby przesunięty w przeciwnym kierunku ze względu na zasadę fizyki zwaną zachowaniem pędu.

Ilość asymetrii neutrin wymagana do wyjaśnienia dużej prędkości w tym ostatnim wyniku byłaby ekstremalna, co potwierdzałoby interpretację, że asymetria w szczątkach eksplozji dała impuls pulsarowi.

Energia przekazana pulsarowi z tej eksplozji była ogromna. Chociaż pulsar ma tylko około 10 mil średnicy, ma masę 500 000 razy większą niż Ziemia i porusza się 20 razy szybciej niż prędkość Ziemi okrążającej Słońce.

Najnowsza praca Xi Longa i Paula Plucinksky’ego (Astrophysics Center | Harvard & Smithsonian) dotycząca G292.0 + 1.8 została zaprezentowana na 240. spotkaniu Amerykańskiego Towarzystwa Astronomicznego w Pasadenie w Kalifornii. Wyniki omówiono również w artykule przyjętym do publikacji w The Astrophysical Journal. Pozostali autorzy artykułu to Daniel Patnaud i Terence Gaetz, obaj z Centrum Astrofizyki.

Odniesienie: „Ruch właściwy pulsara J1124-5916 w galaktycznej pozostałości supernowej G292.0 + 1.8” autorstwa Xi Longa, Daniela J. Patnaude, Paula P. Plucinsky’ego i Terrance’a J. Gaetza, Przyjęto, Czasopismo Astrofizyczne.
arXiv: 2205.07951

Marshall Space Flight Center NASA zarządza programem Chandra. Centrum rentgenowskie Chandra w Smithsonian Astrophysical Observatory kontroluje operacje naukowe z Cambridge w stanie Massachusetts oraz operacje lotnicze z Burlington w stanie Massachusetts.

Dodaj komentarz

Twój adres e-mail nie zostanie opublikowany. Wymagane pola są oznaczone *

سكس صدر كبير porn-arab.net سكس جامد
video masaladesi dampxxx.org forced gangbang porn
punjbi dj com pornflex.org xnxx unblocked
mercy therapy comic hentaitgp.net yoroichi hentai
سكس محارم حقيقي arabianreps.com كس حمارة
افلام سكس فض غشاء البكارة sosiano.com صور زب متحركة
قصص سكس محارم مصور senkoy.net سكس تركى
indiansex university eroanal.net megha akash nude
karnatakasex pornjob.info cute teen fucking
hentaifox.con mobhentai.com what is shota hentai
hentai foxes hentai-pics.net tsuujou
blou film fucktube18.com www.elephant tube
نيك ورعان hailser.com سكس جارتى
maria clara at ibarra episode 42 teleseryes.net valerie conception
indian girl xvedios pornovuku.com punjabi sexyvideo